Abstract
The goal of this paper is to give an explicit construction of the Fock spaces of the parafermion and the paraboson algebra, for an infinite set of generators. This is equivalent to constructing certain unitary irreducible lowest weight representations of the (infinite rank) Lie algebra 𝔰𝔬(∞) and of the Lie superalgebra 𝔬𝔰𝔭(1|∞). A complete solution to the problem is presented, in which the Fock spaces have basis vectors labelled by certain infinite but stable Gelfand–Zetlin patterns, and the transformation of the basis is given explicitly. We also present expressions for the character of the Fock space representations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.