Abstract

Previous experiments from our laboratory showed that retention of two-way active avoidance learning is improved by post-training intracranial electrical stimulation (ICS) of the parafascicular nucleus (PF) and impaired by pre-training electrolytic lesions of the nucleus basalis magnocellularis (NBM). The question investigated here was whether post-training PF ICS is able to attenuate the active avoidance retention deficit observed in rats lesioned pre-training in the NBM. To this goal, the following experimental design was used: rats bilaterally lesioned in the NBM and stimulated in the PF, rats lesioned in the NBM, rats stimulated in the PF, control rats implanted in the PF, and sham-operated rats were first trained in a shuttle-box for a single 30-trial session and tested again following two successive retention intervals (24 h and 11 days). The results showed that: (1) NBM lesions impaired the 11-day performance without affecting either the acquisition or the 24-h retention of the avoidance learning; (2) PF ICS treatment in unlesioned rats improved performance in both retention sessions only when the stimulation was applied in the posterior region of the nucleus; and (3) stimulation of the posterior PF compensated the 11-day retention impairment induced by NBM lesions. These results are discussed in relation to the interaction of arousal systems in the modulation of cognitive processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.