Abstract

Endothelins (ET-1, ET-2, ET-3 and vasoactive intestinal contractor, VIC) and sarafotoxins (SRTX-b and SRTX-c) appear to bind with high affinity to a homogeneous class of binding sites in cultured rat pituitary cells. All of these ligands seem to interact with the same receptor (ET A-R), except for SRTX-c which apparently binds to a separate receptor. Binding was followed by phosphodiesteric cleavage of phosphoinositides, resulting in the formation of inositol phosphates. No consistent effect on basal or gonadotropin-releasing hormone (GnRH)-induced release of luteinizing hormone (LH) was exerted by ET or SRTX during 2 h of static incubation. On the other hand, both groups of vasoactive peptides inhibited basal and thyrotropin-releasing hormone (TRH)-induced prolactin secretion. Surprisingly, activation of phosphoinositide turnover by TRH in pituitary mammotrophs led to stimulation of prolactin secretion, whereas activation of the same pathway by ET or SRTX resulted in inhibition of prolactin secretion. ET and SRTX stimulated inositol phosphate formation in GH3 cell line and in the gonadotroph-like cell line αT-3 (which is capable of producing the α subunit of the gonadotrophins), indicating that the peptides interact with both pituitary mammotrophs and gonadotrophs. The very low concentrations (nM range) needed to stimulate phosphoinositide turnover and to inhibit prolactin secretion, as well as the recent finding that ETs are present in the hypothalamo-pituitary axis suggest that ET might participate in the neuroendocrine modulation of pituitary functions. One such possibility is that ETs might be members of the prolactin inhibiting factors (PIFs) family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.