Abstract
Body temperature and pituitary-adrenal responses to restraint (15 min or 4 h) stress were evaluated in nondependent and morphine-dependent rats. Male Sprague-Dawley rats were treated twice daily with increasing doses of morphine (10-100 mg/kg, s.c.) for 16 days. Transmitters were implanted in the peritoneal cavity to monitor body temperature and blood was collected for hormone assays. Acute withdrawal from chronic morphine treatment was associated with reduced body weight, increased adrenal weight and decreased thymus weight. Sixteen days after termination of chronic morphine treatment, rats had recovered normal adrenal size, but still displayed marked thymus involution and reduced body weight. Restraint-induced hyperthermia was attenuated in morphine-dependent rats that had undergone 12-h withdrawal. Sixteen days after withdrawal, rats still had not fully recovered the hyperthermic response to restraint. Chronic morphine treatment resulted in a marked elevation of basal corticosterone concentrations. Despite the negative-feedback effects of elevated basal corticosterone concentrations, morphine-dependent rats that had undergone 12-h withdrawal displayed a potentiated and prolonged corticosterone response to restraint stress. In contrast, rats that had undergone 8-day and 16-day morphine withdrawal had recovered normal basal pituitary-adrenal activity, but displayed significantly reduced and shorter adrenocorticotropic hormone and corticosterone responses to restraint. These results suggest that chronic morphine dependence is a chronic stressor, resulting in profound and long-lasting changes in the temperature and pituitary-adrenal responses to acute restraint stress in a time-dependent manner. This morphine-dependence model may be useful in understanding the role that hormonal stress responses play in the maintenance and relapse to opioid use in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.