Abstract

Impaired cholesterol metabolism has been reported in Alzheimer’s disease. Since ABCA1 is one of the main players in the brain’s cholesterol homeostasis, here we used the in-vitro and in-silico experiments to investigate the effect of Aβ on ABCA1 protein levels in microglia, astrocytes, and neurons in mice. Microglia, astrocytes, and neurons were cultured and exposed to beta amyloid. ABCA1 in cell lysates was determined by Western blotting, and cholesterol efflux was measured in the conditioned media. Molecular docking, molecular dynamics simulations, and MM-GBSA analysis were conducted to gain a better understanding of the effects of Aβ on ABCA1. In response to Aβ, the protein levels of ABCA1 increase significantly in microglia, astrocytes, and neurons; however, its ability to enhance cholesterol efflux is diminished. Aβ inhibited the function of ABCA1 by obstructing the extracellular tunnel that transports lipids outside the cell, as determined by molecular docking. MD simulation analysis validated these findings. Our results demonstrated that Aβ could increase ABCA1 protein levels in various brain cells, regardless of cell type. Molecular docking, molecular dynamics simulation, and MM-GBSA studies indicate that Aβ has a significant effect on the structural conformation of ABCA1, possibly interfering with its function. We believe that the conformational changes of ABCA1 will inhibit its ability to subsequently release cellular cholesterol. Aβ may obstruct the extracellular tunnel of ABCA1, rendering it less accessible to proteases such as the calpain family, which may explain the increase in ABCA1 levels but decrease in its function. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call