Abstract

We review some counterintuitive properties of standard measures describing quantum entanglement and violation of Bell's inequality (often referred to as "nonlocality") in two-qubit systems. By comparing the nonlocality, negativity, concurrence, and relative entropy of entanglement, we show: (i) ambiguity in ordering states with the entanglement measures, (ii) ambiguity of robustness of entanglement in lossy systems and (iii) existence of two-qubit mixed states more entangled than pure states having the same negativity or nonlocality. To support our conclusions, we performed a Monte Carlo simulation of $10^6$ two-qubit states and calculated all the entanglement measures for them. Our demonstration of the relativity of entanglement measures implies also how desirable is to properly use an operationally-defined entanglement measure rather than to apply formally-defined standard measures. In fact, the problem of estimating the degree of entanglement of a bipartite system cannot be analyzed separately from the measurement process that changes the system and from the intended application of the generated entanglement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.