Abstract
Abstract Hydraulic fracturing has long been an established well stimulation technique in the oil & gas industry, unlocking hydrocarbon reserves in tight and unconventional reservoirs. The two types of hydraulic fracturing are proppant fracturing and acid fracturing. Recently, a new of hydraulic fracturing is emerging which is delivering yet more enhanced production/injection results. This paper conducts a critical review of the emerging fracturing techniques using Thermochemical fluids. The main purpose of hydraulic fracturing is to break up the reservoir and create fractures enhancing the fluid flow from the reservoir matrix to the wellbore. This is historically achieved through either proppant fracturing or acid fracturing. In proppant fracturing, the reservoir is fractured through a mixture of water, chemicals and proppant (e.g. sand). The high-pressure water mixture breaks the reservoir, and the proppant particles enter in the fractures to keep it open and allow hydrocarbon flow to the wellbore. As for acid fracturing, the fractures are kept open through etching of the fracture face by acid such as Hydrochloric Acid (HCl). An emerging technique of hydraulic fracturing is through utilization of thermochemical solutions. These environmentally friendly and cost-efficient are not reactive as surface conditions, and only react in the reservoir at designated conditions through reservoir temperature or pH-controlled activation techniques. Upon reaction, the thermochemical solutions undergo an exothermic reaction generating in-situ foam/gases resulting in creating up to 20,000 psi in-situ pressure and temperature of up to 700 degrees Fahrenheit. Other reported advantages from thermochemical fracturing include the condensate bank removal (due to the exothermic reaction temperature) and capillary pressure reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.