Abstract
The high variability of HIV-1 as well as the lack of efficient repair mechanisms during the stages of viral replication, contribute to the rapid emergence of HIV-1 strains resistant to antiretroviral drugs. The selective pressure exerted by the drug leads to fixation of mutations capable of imparting varying degrees of resistance. The presence of these mutations is one of the most important factors in the failure of therapeutic response to medications. Thus, it is of critical to understand the resistance patterns and mechanisms associated with them, allowing the choice of an appropriate therapeutic scheme, which considers the frequency, and other characteristics of mutations. Utilizing Paraconsistents Artificial Neural Networks, seated in Paraconsistent Annotated Logic Et which has the capability of measuring uncertainties and inconsistencies, we have achieved levels of agreement above 90% when compared to the methodology proposed with the current methodology used to classify HIV-1 subtypes. The results demonstrate that Paraconsistents Artificial Neural Networks can serve as a promising tool of analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.