Abstract

In this paper we consider the systems of weakening of intuitionistic negation logic mZ, introduced in [1], [2], which are developed in the spirit of da Costa's approach. We take a particular attention on the philosophical considerations of the paraconsistent mZ logic w.r.t. the constructive semantics of the intuitionistic logic, and we show that mZ is a subintuitionistic logic. Hence, we present the relationship between intuitionistic and paraconsistent subintuitionistic negation used in mZ. Then we present a significant number of examples for this subintuitionistic and paraconsistent mZ logics: Logic Programming with Fiting's fixpoint semantics for paraconsistent weakening of 3-valued Kleene's and 4-valued Belnap's logics. Moreover, we provide a canonical construction of infinitary-valued mZ logics and, in particular, the paraconsistent weakening of standard Zadeh's fuzzy logic and of the Godel-Dummet t-norm intermediate logics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.