Abstract

We report here the paraconductivity of ErBa2Cu3−xMxO7−δ (M = Zn and Fe) superconductors. The logarithmic plots of excess conductivity δσ and reduced temperature ℂ reveal two different exponents corresponding to crossover temperature as a result of shifting the order parameter from 2 to 3. The first exponent in the normal field region is close to 1, in which the order parameter dimensionality (OPD) is 2. The second exponent in the critical field region is close to 0.5, in which the OPD is 3. The coherence length, interlayer coupling, interlayer separation and carrier concentration decrease with increasing doping content, and their values for Fe samples are different from those of Zn samples. While anisotropy is increased with increasing doping content, it is generally higher for a Zn sample than that for an Fe sample. We also estimate several physical parameters such as upper critical magnetic fields in the a—b plane and along the c axis (Bab and Bc), and critical current density J at 0 K. Although Bab and Bc are generally increased with doping content increasing, the value of Bab is found to be twice more than that of Bc. A similar behavior is obtained for J (0 K) and its value is higher in the Fe sample than that in the Zn sample. These results are discussed in terms of oxygen deficiency, localization of carriers, and flux pinning, which are produced by doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.