Abstract

Let us say that an order embedding of an uncountable regular cardinal in a linearly ordered set is continuous if it preserves the suprema (for all smaller limit ordinals). This makes the embedding a homeomorphism for the two order topologies; and if the image has no supremum, it is a closed subspace. Since uncountable regular cardinals fail to be paracompact, a linearly ordered set can be paracompact only if it admits no such embedding or anti-embedding. Conversely, Gillman and Henriksen have shown that this suffices (Trans. A.M.S. 77 (1954) pp. 352 ff).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.