Abstract

Abstract Charcoal-based materials have attracted much attention for the removal of pharmaceutical agents. The charcoal-based carbon materials have green synthetic routes, high surface area, numerous active site with active functional groups available for physico-chemical interactions with adsorbate for surface-adsorptive removal of toxins. In this study, acid treated activated carbon was developed from the peach seeds using thermal pyrolysis approach. Phosphoric acid activated carbon (PAC) was further modified by HNO3 and employed as an adsorbent for the removal of amoxicillin and paracetamol and process variables were optimized for enhanced removal of amoxicillin and paracetamol. The adsorption of pharmaceutical agents was significantly affected by temperature, pH and reaction time. The amoxicillin and paracetamol sorption process onto PCA followed a pseudo second order kinetics and Langmuir isotherm model with a maximum removal capacity of 51.8 mg/g and 51.1 mg/g, respectively. The results revealed that acid activated carbon has promising efficiency for the removal of amoxicillin and paracetamol from aqueous medium and peach seeds derived PCA could be employed for the removal of these pharmaceutical agents from effluents and PAC is also extendable for the removal of other drugs from pharmaceutical wastewater streams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.