Abstract

Paracetamol (acetaminophen) is generally considered to be the analgesic of choice for patients undergoing oral anticoagulant therapy. Occasionally, however, interactions have been reported with therapeutic doses of the analgesic, e.g. if the drug is taken for a longer period of time. The mechanism of this interaction is not clearly understood. We investigated the effects of paracetamol and its toxic metabolite N-acetyl-para-benzoquinoneimine (NAPQI) on in vitro vitamin K-dependent gamma-carboxylase (VKD-carb) and vitamin K epoxide reductase (VKOR) activities. Paracetamol had no effect in either enzymatic reactions. NAPQI, on the other hand, appeared to interfere with VKD carb activity via two mechanisms; 1) oxidation of the cofactor vitamin K-hydroquinone, 2) inactivation of the enzyme. The inactivation, in micromolar ranges, is not reversible and may be the result of covalent binding of NAPQI with functional amino acids. NAPQI also inhibited VKOR, but at higher concentrations. Unexpectedly, N-acetylcysteine was found to inhibit VKOR activity at concentrations that are obtained during rescue therapy of paracetamol intoxication. We conclude that, the potentiation of the oral anticoagulant effect by paracetamol is likely to result from NAPQI-induced inhibition of enzymes of the vitamin K cycle, particularly VKD-carb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.