Abstract

The rise of antibiotic-resistance as well as the reduction of investments by pharmaceutical companies in the development of new antibiotics have stimulated the investigation for alternative strategies to conventional antibiotics. Many antimicrobial peptides show a high specificity for prokaryotes and a low toxicity for eukaryotic cells and, due to their mode of action the development of resistance is considered unlikely. We recently characterized an antimicrobial peptide that was called Paracentrin 1 from the 5-kDa peptide fraction from the coelomocyte cytosol of the Paracentrotus lividus. In this study, the chemically synthesized Paracentrin 1, was tested for its antimicrobial and antibiofilm properties against reference strains of Gram positive and Gram negative. The Paracentrin 1 was active against planktonic form of staphylococcal strains (reference and isolates) and Pseudomonas aeruginosa ATCC 15442 at concentrations ranging from 12.5 to 6.2 mg/ml. The Paracentrin 1 was able to inhibit biofilm formation of staphylococcal and Pseudomonas aeruginosa strains at concentrations ranging from 3.1 to 0.75 mg/ml. We consider the tested peptide as a good starting molecule for novel synthetic derivatives with improved pharmaceutical potential.

Highlights

  • Many natural antimicrobial peptides show a high specificity for prokaryotes and a low toxicity for eukaryotic cells, and for their mode of action the development of resistance by pathogenic bacteria is considered unlikely (Hancock and Rozek 2002)

  • The synthetic fragment synthesized paracentrin 1 (SP1) of β-thymosin extracted from coelomocytes of the P. lividus shares structural characteristics of many antimicrobial peptides: it is a cationic peptide and possesses a significant proportion (~40%) of hydrophobic or non polar residues (Hancock and Lehrer 1998; Zasloff 2002)

  • According to the Shai-Matsuzaki-Huang model, the peptides bind to the membrane surface first and with their amphipathic structure they enter into the membrane, breaking up the lipid chains and forming transient pore; this process can cause a collapse of the membrane at a critical peptide concentration (Hancock and Chapple 1999; Huang 2000; Matsuzaki 1998; Shai 2002)

Read more

Summary

Introduction

Many natural antimicrobial peptides show a high specificity for prokaryotes and a low toxicity for eukaryotic cells, and for their mode of action the development of resistance by pathogenic bacteria is considered unlikely (Hancock and Rozek 2002). Chronic and persistent forms of some infectious diseases depend on the ability of pathogenic bacteria to develop bacterial communities called biofilms. Opportunistic pathogens, such as staphylococcal strains and Pseudomonas aeruginosa show a great ability to produce biofilms that preventing infected wounds to heal, render the treatment extremely challenging. The treatment of biofilm-associated infections is complicated because microbial biofilms are typically highly resistant to conventional antibiotics (Gilbert et al 2002). The discovery of anti-infective agents active against planktonic microorganisms and against biofilms represents an important goal for an effective control of infections (Projan and Youngman 2002)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.