Abstract

Morphological features and functional implications of projections of the parabrachial nucleus to the central nucleus of the amygdala were investigated in the rat. The anatomical study was based on injections of the tracers horseradish peroxidase and biotinylated dextran amine. An extremely dense concentration of labeled fibers was found in the lateral and lateral capsular subdivisions of the central nucleus of the amygdala, originating mainly from the external lateral and ventral lateral subnuclei of the parabrachial nucleus. The parabrachial fibers exhibited the morphological characteristic of forming dense pericellular terminal arborizations. The functional implications of this pathway in cardiovascular functions were verified using Fos protein induction in response to hypotension induced by continuous intravenous administration of hydralazine-hydrochloride. In this paradigm, Fos immunoreactivity was found to be confined to the lateral and lateral capsular subdivisions of the central nucleus of the amygdala. Double immunostaining methods were used to visualize, at the electron microscopic level, terminals labeled by biotinylated dextran amine and Fos cell labeling. With this approach, we were able to confirm that Fos-immunoreactive neurons in the central nucleus of the amygdala receive axosomatic terminals from the parabrachial nucleus. The present findings point out that parabrachial inputs to the central nucleus of the amygdala play a relevant role in regulating cardiovascular function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call