Abstract
Let E be a subset in (n+1)-dimensional Euclidean space with parabolic homogeneity, codimension 1, and with an appropriate surface measure σ associated with it. For certain kinds of parabolic Calderon–Zygmund operators T we prove that the L2(E,dσ)-boundedness of T is equivalent to the parabolic uniform rectifiability of E. This is a parabolic version of a well-known result of G. David and S. Semmes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.