Abstract
This paper describes the computation of reachable sets and tubes for linear time-invariant systems with an unknown input bounded by integral quadratic constraints, modeling e.g. delay, rate limiter, or energy bounds. We define a family of paraboloidal overapproximations. These paraboloids are supported by the reachable tube on touching trajectories. Parameters of each paraboloid are expressed as a solution to an initial value problem. Compared to previous methods based on the classical linear quadratic regulator, our approach can be applied to unstable systems as well. We tested our approach on large scale systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.