Abstract
When an integrable Hamiltonian system, possessing an m-resonant lower dimensional normally parabolic torus is perturbed, a parabolic m-resonance occurs. If, in addition, the iso-energetic non-degeneracy condition for the integrable system fails, the near integrable Hamiltonian exhibits a flat parabolic m-resonance. It is established that most kinds of parabolic resonances are persistent in n(n⩾3) d.o.f. near integrable Hamiltonians, without the use of external parameters. Analytical and numerical study of a phenomenological model of a 3 degrees of freedom (d.o.f.) near integrable Hamiltonian system reveals that in 3 d.o.f. systems new types of parabolic resonances appear. Numerical study suggests that some of them cause instabilities in several directions of the phase space and a new type of complicated chaotic behavior. A model describing weather balloons motion exhibits the same dynamical behavior as the phenomenological model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.