Abstract

A novel parabolic carrier pulsewidth modulation (PWM) method is proposed in this paper for direct current control in a voltage-source converter (VSC). This method employs a pair of parabolic PWM carriers (a positive one and a negative one) to determine the switching states of the two switches in a converter phase leg while limiting the current tracking error within a nonlinear hysteresis band. Similar to the hysteresis PWM method, the proposed parabolic PWM can regulate both dc current and ac current with excellent and accurate dynamic response. Furthermore, as a carrier-based PWM method, the proposed parabolic PWM can maintain a constant switching frequency by the automatic peak current error adjustment through the PWM process. In this paper, the basic operation principle of the proposed PWM method is discussed, and its implementation scheme is presented. Simulation and experimental results based on a single-phase VSC with bipolar PWM implementation are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.