Abstract

The current analysis is carried out to envision the properties of magneto-hydrodynamic boundary layer stagnation point flow of Eyring-Powell (non-Newtonian) fluid induced by an inclined stretching cylindrical surface in the presence of both mixed convection and Joule heating effects. Flow analysis is manifested with temperature stratification phenomena. The strength of temperature adjacent to the cylindrical surface is assumed to be higher in strength as compared to the ambient fluid. A suitable similarity transformations are utilized to convert the flow conducting equations (mathematically modelled) into system of coupled non-linear ordinary differential equations. A fifth order Runge-Kutta algorithm charted with shooting scheme is used to trace out the numerical additions. It was found that the velocity profile is an increasing function of both mixed convection and curvature parameters. Temperature profile show inciting nature towards Eckert number. In addition, a straight line and parabolic curve fitting way of study is executed to inspect the effect logs of mixed convection parameter, magnetic field parameter, thermal stratification parameter and heat generation parameter on skin friction coefficient and heat rate. It seems to be first attempt in this direction and will serve as a facilitating source for the preceding studies regarding fluid rheology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.