Abstract

Maintaining proper chromosome inheritance after the completion of each cell cycle is paramount for bacterial survival. Mechanistic details remain incomplete for how bacteria manage to retain complete chromosomes after each cell cycle. In this study, we examined the potential roles of the partitioning protein ParA on chromosomal maintenance that go beyond triggering the onset of chromosome segregation in Caulobacter crescentus. Our data revealed that increasing the levels of ParA result in cells with multiple origins of replication in a DnaA-ATP-dependent manner. This ori supernumerary is retained even when expressing variants of ParA that are deficient in promoting chromosome segregation. Our data suggest that in Caulobacter ParA's impact on replication initiation is likely indirect, possibly through the effect of other cell cycle events. Overall, our data provide new insights into the highly interconnected network that drives the forward progression of the bacterial cell cycle. IMPORTANCE The successful generation of a daughter cell containing a complete copy of the chromosome requires the exquisite coordination of major cell cycle events. Any mistake in this coordination can be lethal, making these processes ideal targets for novel antibiotics. In this study, we focused on the coordination between the onset of chromosome replication, and the partitioning protein ParA. We demonstrate that altering the cellular levels of ParA causes cells to accumulate multiple origins of replication in Caulobacter crescentus. Our work provides important insights into the complex regulation involved in the coordination of the bacterial cell cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call