Abstract

Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.

Highlights

  • Clostridium difficile is a Gram-positive spore-forming enteric pathogen and the leading cause of antibiotic-associated diarrhoea worldwide[1]

  • Antibiotics disrupt the natural protective gut microbiota, rendering people susceptible to C. difficile infection, which leads to potentially life-threatening disease and complications

  • Our study provides new insights into the effects of p-cresol production on the healthy gut microbiota and how it contributes to C. difficile survival and pathogenesis

Read more

Summary

Introduction

Clostridium difficile is a Gram-positive spore-forming enteric pathogen and the leading cause of antibiotic-associated diarrhoea worldwide[1]. C. difficile infection (CDI) ranges from selflimiting diarrhoea to severe and life threatening pseudomembranous colitis[2]. C. difficile spores are the aetiological agent of CDI transmission and are resistant to desiccation, environmental stress, disinfectants and heat[3, 4]. These spores, present in both hospitals and the environment are transmitted via the faecal-oral route, contributing to both nosocomial and community acquired CDI [3]. Infection with C. difficile is frequently preceded by treatment with broad-spectrum antibiotics, which eliminate discrete taxa of the commensal intestinal microbiota resulting in dysbiosis and permitting colonisation by C. difficile. A greater understanding of how C. difficile is able to influence the gut microbiota and disrupt intestinal homeostasis is a current imperative

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call