Abstract

Poly(ADP-ribosyl)ation is predominantly catalyzed by Poly(ADP-ribose) polymerase 1 (PARP1) in response to DNA damage, mediating the DNA repair process to maintain genomic integrity. Single-strand (SSB) and double-strand (DSB) DNA breaks are bona fide stimulators of PARP1 activity. However, PAR-mediated PARP1 regulation remains unexplored. Here, we report ZnF3, BRCT, and WGR, hitherto uncharacterized, as PAR reader domains of PARP1. Surprisingly, these domains recognize PARylated protein with a higher affinity compared with PAR but bind with weak or no affinity to DNA breaks as standalone domains. Conversely, ZnF1 and ZnF2 of PARP1 recognize DNA breaks but bind weakly to PAR. In addition, PAR reader domains, together, exhibit a synergy to recognize PAR or PARylated protein. Further competition-binding studies suggest that PAR binding releases DNA from PARP1, and the WGR domain facilitates DNA release. Unexpectedly, PAR showed catalytic stimulation of PARP1 but hampered the DNA-dependent stimulation. Altogether, our work discovers dedicated high-affinity PAR reader domains of PARP1 and uncovers a novel mechanism of allosteric regulation of DNA-dependent and DNA-independent activities of PARP1 by its catalytic product PAR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call