Abstract

ObjectiveLow-density lipoprotein cholesterol (LDL-C) is the hallmark of atherosclerotic cardiovascular diseases. The hepatic LDL receptor (LDLR) plays an important role in clearance of circulating LDL-C. PCSK9 facilitates degradation of LDLR in the lysosome and antagonizing PCSK9 has been successfully used in the clinic to reduce blood LDL-C level. Here we identify a new player that modulates LDLR interaction with PCSK9, thus controlling LDLR degradation and cholesterol homeostasis. MethodsThe blood LDL-C and cholesterol levels were analyzed in mice with hepatic deletion of Paqr3 gene. The half-life of LDLR was analyzed in HepG2 cells. The interaction of PAQR3 with LDLR and PCSK9 was analyzed by co-immunoprecipitation and immunofluorescent staining. ResultsThe blood LDL-C and total cholesterol levels in the mice with hepatic deletion of Paqr3 gene were significantly lower than the control mice after feeding with high-fat diet (p < 0.001 and p < 0.05 respectively). The steady-state level of LDLR protein is elevated by Paqr3 knockdown/deletion and reduced by PAQR3 overexpression. The half-life of LDLR protein is increased by Paqr3 knockdown and accelerated by PAQR3 overexpression. PAQR3 interacts with the β-sheet domain of LDLR and the P-domain of PCSK9 respectively. In addition, PAQR3 can be localized in early endosomes and colocalized with LDLR, PCSK9 and LDL. Mechanistically, PAQR3 enhances the interaction between LDLR and PCSK9. ConclusionOur study reveals that PAQR3 plays a pivotal role in controlling hepatic LDLR degradation and blood LDL-C level via modulating LDLR-PCSK9 interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.