Abstract
Multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system have been proposed in the recent past for providing high data-rate services over wireless channels. When combined with space time coding it provides the advantages of space-time coding and OFDM, resulting in a spectrally efficient wideband communication system. However, MIMO-OFDM system suffer with the problem of inherent high peak-to-average power ratio (PAPR) due to the intersymbol interference between the subcarriers. In order to obtain an optimal PAPR reduction using the partial transmit sequence (PTS), the total search for the number of subblocks and the rotation factors must be accomplished. As the number of subblocks and rotation factors increases, PAPR reduction improves. The number of calculation increases as the number of subblocks increases, such that complexity increases exponentially and the process delay occur simultaneously. In this paper, PAPR reduction based on a modified PTS scheme combined with interleaving and pulse shaping method in MIMO-OFDM has been presented. The paper analyses the influence of the number of the detected peaks on PAPR reduction performance and on complexity, and then obtain the optimal parameter to achieve better PAPR reduction performance and lower complexity. Simulation results have shown that modified PTS with interleaving and the pulse shaping method can obviously improve PAPR performance in the MIMO-OFDM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.