Abstract

Orthogonal frequency-division multiplexing (OFDM) is a practical technology in visible light communication (VLC) for high-speed transmissions. However, one of its operational limitations is the peak-to-average power ratio (PAPR) of the transmitted signal. In this paper, we analyze the PAPR distributions of four VLC OFDM schemes, namely DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse amplitude modulated discrete multitone (PAM-DMT), and Flip-OFDM. Both lower and upper clippings are considered. We analytically derive the complementary cumulative distribution functions (CCDFs) of the PAPRs of the clipped VLC OFDM signals, and investigate the impact of lower and upper clippings on PAPR distributions. Our analytical results, as verified by numerical simulations, provide useful insights and guidelines for VLC OFDM system designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call