Abstract

Pappalysins (PAPP-A, PAPP-A2) modulate body growth by increasing insulin-like growth factor I (IGF-I) bioavailability through cleavage of insulin-like growth factor binding proteins (IGFBPs) and are inhibited by stanniocalcins (STC1, STC2). Normative data on these novel factors, as well as on free IGF-I and uncleaved fractions of IGFBPs, are not well established. This work aimed to determine serum concentrations of PAPP-A, PAPP-A2, STC1, and STC2 in relationship with other growth hormone (GH)-IGF axis parameters during development. Full-term newborns (150; gestational age: 39.30 ± 1.10 weeks), 40 preterm newborns (30.87 ± 3.35 weeks), and 1071 healthy individuals (aged 1-30 years) were included in the study and divided according to their Tanner stages (males and females): I:163 males, 154 females; II:100 males, 75 females; III:83 males, 96 females; IV: 77 males, 86 females; and V:109 males,128 females. Serum concentrations of PAPP-A, PAPP-A2, STC1, STC2, IGFBP-2, total IGFBP-4, and total IGFBP-5 were elevated at birth and declined throughout childhood. In postnatal life, PAPP-A2 concentrations decreased progressively in concomitance with the free/total IGF-I ratio; however, stanniocalcin concentrations remained stable. PAPP-A2 concentrations positively correlated with the free/total IGF-I ratio (r = +0.28; P < .001) and negatively with the intact/total IGFBP-3 ratio (r = -0.23; P < .001). PAPP-A concentrations inversely correlated with intact/total IGFBP-4 ratio (r = -0.21; P < .001), with PAPP-A concentrations being lower in females at all ages. Association studies indicate the importance of stanniocalcins and pappalysins in the control of this axis in an age-specific manner. This study provides reference values of pappalysins and stanniocalcins, which modulate IGF-I activity by changing the concentrations of cleaved and uncleaved IGFBPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.