Abstract
ObjectiveIn humans, loss-of-function mutations in the gene encoding pregnancy-associated pregnancy protein-A2 cause short stature and slightly reduced bone density. The goal of this study was to determine the effects of Pappa2 deletion on bone in mice. DesignPappa2 deletion mice and littermate controls were culled at 10, 19 or 30 weeks of age and femurs were analysed by micro-computed tomography. Serum markers of bone turnover and insulin-like growth factor binding protein 5 (IGFBP-5), a proteolytic target of PAPP-A2, were measured by ELISA. ResultsAt 10 and 19 weeks of age, Pappa2 deletion mice had slightly reduced trabecular parameters, but by 19 weeks of age, female deletion mice had increased cortical tissue mineral density, and this trait was increased by a small amount in deletion mice of both sexes at 30 weeks. Cortical area fraction was increased in Pappa2 deletion mice at all ages. Deletion of Pappa2 increased circulating IGFBP-5 levels and reduced markers of bone turnover (PINP and TRACP 5b). ConclusionsPAPP-A2 contributes to the regulation of bone structure and mass in mice, likely through control of IGFBP-5 levels. The net effect of changes in bone formation and resorption depend on sex and age, and differ between trabecular and cortical bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.