Abstract

For each integer $n$, an $n$-folding curve is obtained by folding $n$ times a strip of paper in two, possibly up or down, and unfolding it with right angles. Generalizing the usual notion of infinite folding curve, we define complete folding curves as the curves without endpoint which are unions of increasing sequences of $n$-folding curves for $n$ integer. We prove that there exists a standard way to extend any complete folding curve into a covering of $R^2$ by disjoint such curves, which satisfies the local isomorphism property introduced to investigate aperiodic tiling systems. This covering contains at most six curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.