Abstract

Sensor arrays, which draw inspiration from the mammalian olfactory system, are fundamental concepts in high-throughput analysis based on pattern recognition. Although numerous optical sensor arrays for various targets in aqueous media have demonstrated their diverse applications in a wide range of research fields, practical device platforms for on-site analysis have not been satisfactorily established. The significant limitations of these sensor arrays lie in their solution-based platforms, which require stationary spectrophotometers to record the optical responses in chemical sensing. To address this, this review focuses on paper substrates as device components for solid-state sensor arrays. Paper-based sensor arrays (PSADs) embedded with multiple detection sites having cross-reactivity allow rapid and simultaneous chemical sensing using portable recording apparatuses and powerful data-processing techniques. The applicability of office printing technologies has promoted the realization of PSADs in real-world scenarios, including environmental monitoring, healthcare diagnostics, food safety, and other relevant fields. In this review, we discuss the methodologies of device fabrication and imaging analysis technologies for pattern recognition-driven chemical sensing in aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call