Abstract

Thermochemical heat storage materials for space heating applications such as, ZnSO4 offer high energy storage density, low cost and clean mean of long-term solar energy storage. Herein, we studied the ZnSO4 hydrated salt as potential heat storage material at low temperature and furthermore observed the impact of temperature and concentration on the dehydration/hydration process and enthalpy. The thermal behavior of ZnSO4•7H2O was investigated by applying various dehydration temperatures. The results showed that 85% of water loosed at 100 °C temperature, which released 699 J/g (1.37 GJ/m3) in the dehydration process. The hydration process of ZnSO4.7H2O at 100 °C recovered 541 J/g enthalpies, which delivered 1.1 GJ/m3. Similarly, the dehydration result obtained at 150 °C was the same as showed at 100 °C. However, the enthalpy of hydration was 20% less than prior. The XRD result showed that at higher temperatures agglomeration appeared followed by Van der Waals forces which affect the hydration rate. The result of good cyclability and larger water sorption performance of ZnSO4 make them a promising and suitable for heat storage in space heating application, which can be used as thermochemical heat storage material for thermal storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.