Abstract
Solid-state supercapacitors have shown extraordinary promise for flexible and wearable electronics. To date, they are still limited by relatively poor energy volumetric performances, which are largely determined by the pore structures and physicochemical properties of electrode materials. Moreover, the poor mechanical properties afforded because of the intrinsic shortcomings of electrode materials need to be resolved. Herein, we designed a flexible and solid-state yarn electrode with high porosity and high affinity toward electrolytes using poly(3,4-ethylenedioxythiophene) (PEDOT) and Korean heritage paper (KHP). To maximize the volumetric capacitive energy storage, PEDOT-loaded conductive KHP sheets (two-dimensional) were transformed into a biscrolled yarn (one-dimensional) via simple twisting. The volumetric capacitance of the biscrolled yarn supercapacitors with 1 mm cell diameter exhibited a volumetric specific capacitance of ∼6576 mF/cm3 at a scan rate of 25 mV/s, which is attributable to the high mass loading of PEDOT as a conductive support and increased packing density. Moreover, multiple optimized yarn supercapacitors can be connected to yield a total length of 1 m, demonstrating enormous potential as a portable and wearable power supply for operating smartwatches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.