Abstract
A highly stable and luminescent lead-free manganese(II) halide hybrid MnBr4(TMN)2 (C34H42Br4MnN4) was designed and synthesized by introducing a large cationic organic spacer. The MnBr4(TMN)2 displays high luminescence with quantum yields up to 77% and possesses turn-off fluorescence behavior (Ex/Em=365/546 nm) for water. These properties make the MnBr4(TMN)2 a promising candidate as an alternative indicator for the detection of water with potential applications for the fabrication of LEDs. Herein, a paper-based sensor based on MnBr4(TMN)2 is described for the determination of water content in organic solvents. The mechanism of water sensing can be tentatively explained by fluorescence quenching originating from the destruction of water dueto the Mn-Br bonds of MnBr4(TMN)2. The MnBr4(TMN)2-based paper sensor exhibits an excellent discrimination ability of water content in therange 0-25.0% with a detection limit of 0.27%. Satisfactory recoveries (94.91±4.09% to 103.23±2.38%) are obtained in spiked ethanol solvent samples, which demonstrate that the MnBr4(TMN)2-based paper sensor is capable of detecting water content in real ethanol solvent samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.