Abstract
Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.