Abstract

The research presented in this paper introduces a novel environmental energy-harvesting technology that harnesses electricity from the evaporation of water using porous structural materials. Specifically, a strategy employing paper-based hydroelectric generators (p-HEGs) is proposed to capture the energy produced during water evaporation and convert it into usable electricity. The p-HEGs offer several advantages, including simplicity in fabrication, low cost, and reusability. To evaluate their effectiveness, the water evaporation-induced electrical output performance of four different p-HEGs are compared. Among the variants tested, the p-HEG combining wood pulp and polyester fiber exhibits the best output performance. At room temperature, this particular p-HEG generates a short-circuit current and open-circuit voltage of ≈0.4µA and 0.3V, respectively, thereby demonstrating excellent electrical stability. Furthermore, the electrical current and voltage generated by the p-HEG through water evaporation are able to power an LED light, both individually and in series and parallel connections. This study delves into the potential of electricity harvesting from water evaporation and establishes it as a viable method for renewable energy applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.