Abstract

Hyaluronidase (HAase) is implicated in inflammation, cancer development, and allergic reaction. The detection of HAase is significantly important in clinical diagnosis and medical treatment. Herein, we propose a new principle for the development of equipment-free and label-free paper-based flow sensors based on the enzymatic hydrolysis-induced viscosity change in a stimuli-responsive polymer solution, which increases the water flow distance on the pH indicator paper. The detection of HAase is demonstrated as an example. This facile and versatile method can overcome the potential drawbacks of traditional hydrogel-based sensors, including complex preparation steps, slow response time, or low sensitivity. Moreover, it can also avoid the use of specialized instruments, labeled molecules, or functionalized nanoparticles in the sensors developed using the polymer solutions. Using this strategy, the detection of HAase is achieved with a limit of detection as low as 0.2 U/mL. Also, it works well in human urine. Additionally, the detection of tannic acid, which is an inhibitor of HAase, is also fulfilled. Overall, a simple, efficient, high-throughput, and low-cost detection method is developed for the rapid and quantitative detection of HAase and its inhibitor without the use of labeled molecules, synthetic particles, and specialized instruments. As only minimal reagents of HAase, HA, and paper are used, it is very promising in the development of commercial kits for point-of-care testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.