Abstract
Nitrogen-doped graphene quantum dots (N-GQDs) were prepared using pyrolysis, with citric acid and urea as the carbon and nitrogen sources, respectively, to be used for Cu2+ ion detection in a paper-based ECL sensor. Existing methods for Cu2+ detection require expensive equipment, specialized experimental chambers, or complex sample pretreatment procedures, which limit their functionality. Using first principles, the electronic and optical properties of graphene quantum dots (GQDs) and N-GQDs were calculated and analyzed. The N-GQDs showed clearer green fluorescence under long-wave ultraviolet light and a better, more stable electrochemiluminescence (ECL) performance. Using first principles, the electronic and optical properties of the GQDs and N-GQDs were calculated and analyzed, and A theoretical mechanism for the observed ECL enhancement in the N-GQDs was proposed. A paper-based ECL sensor with N-GQDs was then developed, using a screen-printing technique, to detect Cu2+ ions. The results showed that the ECL intensity of the sensor increased as the Cu2+ ion concentration increased, and the sensor demonstrated a linear detection range of 0.01–1000 μM. Overall, the sensor exhibited excellent ECL stability, reproducibility, and selectivity. This simple, inexpensive, and effective monitoring technique can be used to detect Cu2+ to prevent negative effects on human health and the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.