Abstract
Since 2020, human pharmaceuticals were included in the list of emerging contaminants from the UNESCO and their detection and elimination were incorporated in the 2030 Agenda for Sustainable Development Goal Targets. Among these, analgesic and antipyretic drugs are the most widely used drugs worldwide and, despite their advantages, unused or expired pharmaceuticals are a potential source of water pollution. Paracetamol is one of the most common drugs used for analgesic and antipyretic purposes and has been found to have a much higher concentration in water streams in many European countries. Considering that, an all-in-one paper-based 2 dimensional (2D) fluidic configuration, able to detect paracetamol, was developed in order to deal with environmental matrices without complex/expensive analytical procedures. An ad-hoc paper-based testing area, coupled with a channel was designed and wax-printed onto a porous filter paper. Successively three electrodes were screen-printed, and the whole system was applied for the detection of paracetamol in wastewaters (prior and after the filtration system) without pretreating the sample. In order to detect paracetamol with the easiest approach, the configuration of the paper-based device was optimized in terms of type of substrate used for printing, microfluidic paper strip length/width and combination of them in an integrated architecture, capable to detect paracetamol in the matrices tested in few seconds with a detection limit down to micromolar range, ca. 1 μM. The integrated device shown great promise for simple, fast, sensitive, and sustainable detection of paracetamol in its role of emerging contaminant, especially in the environmental matrices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.