Abstract

In this study, papaya peel was converted into papaya peel-derived activated carbon (PPAC) and tested for batch adsorption of CAP. During synthesizing of PPAC, hydrothermal carbonization (HTC) was carried out followed by chemical activation via potassium hydroxide (KOH) and microwave heating to enhance its surface area, porosity, and functional groups. Microwave power for activation process (364-700 W) and initial CAP concentration (5-100 mg/L) were investigated to study the PPAC adsorption capacity and percentage removal. Based on the experimental data, increased microwave power led to an increase in both adsorption capacity and percentage removal until an optimum value. Adsorption capacity also increased when initial CAP concentration increased owing to the higher driving force generated to overcome mass transfer resistance at higher initial CAP concentration. Maximum adsorption capacity of 22.9958 mg/g and maximum percentage removal of 82.40% was achieved. Moreover, the Langmuir isotherm model and pseudo-second-order kinetic model best fitted the data for CAP removal via PPAC. The findings indicated that PPAC was a promising and potential adsorbent in decontaminating CAP from water sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.