Abstract

Daudi (B-cell line) and Molt-3 (T-cell line) cells provide a model for the study of apoptosis, the induction of which is often accompanied by concominant modulations of proteins involved in mRNA maturation. One of these proteins is poly(A) polymerase (PAP), which is responsible for mRNA cleavage and polyadenylation. A number of recent reports also suggest involvement of mRNA maturation and stability in the induction of specific pathways of cell apoptosis. In this study we identified PAP activity levels and isoform modulations in two different cell lines (Daudi and Molt-3) and related them to DNA fragmentation (a hallmark of apoptosis) and cell cycle phase specificity in terms of the temporal sequence of events and the time that elapsed between administration of the apoptosis inducer (the widely used anticancer drug etoposide) and the observed effects. Treatment of both cell lines with 20 microg/mL etoposide induced apoptosis after four hours in Molt-3 cells and only after 24 hours in Daudi cells, as revealed by two independent methods. In Daudi cells the PAP activity levels and isoforms were downregulated prior to deltapsim reduction, DNA fragmentation and the morphological changes of the nucleus, whereas in Molt-3 cells no PAP activity and isoform modulations were observed prior to the early hallmarks of apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.