Abstract
Genomics researchers increasingly use multiple reference genomes to comprehensively explore genetic variants underlying differences in detectable characteristics between organisms. Pangenomes allow for an efficient data representation of multiple related genomes and their associated metadata. However, current visual analysis approaches for exploring these complex genotype-phenotype relationships are often based on single reference approaches or lack adequate support for interpreting the variants in the genomic context with heterogeneous (meta)data. This design study introduces PanVA, a visual analytics design for pangenomic variant analysis developed with the active participation of genomics researchers. The design uniquely combines tailored visual representations with interactions such as sorting, grouping, and aggregation, allowing users to navigate and explore different perspectives on complex genotype-phenotype relations. Through evaluation in the context of plants and pathogen research, we show that PanVA helps researchers explore variants in genes and generate hypotheses about their role in phenotypic variation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.