Abstract

The unidirectional influx of D-pantothenic acid (PA) across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique using [3H]D-PA (1.1 Ci/mmol). PA was transported across the blood-brain barrier by a saturable system that could be described by a Michaelis-Menten transport model with a half-saturation concentration and maximal influx rate of 19 microM and 0.21 nmol/g of brain/min, respectively. PA (0.3 microM) transport through the blood-brain barrier was significantly inhibited by probenecid, nonanoic acid, and biotin (all less than or equal to 0.25 mM), but not by penicillin G, pyruvate, beta-hydroxybutyrate, L-leucine (all 1 mM), or poly-L-lysine HBr (1 mg/ml). Probenecid (0.25 mM), nonanoic acid (0.5 mM), and PA (1.0 mM) did not inhibit [3H]L-leucine transport through the blood-brain barrier, whereas 30 microM-L-leucine inhibited [3H]leucine transport to 23% of control values. Thus, PA is transported through the blood-brain barrier by a low-capacity, saturable transport system with a half-saturation concentration approximately 10 times the plasma PA concentration. Although involved in the transfer of PA from blood into brain, this system does not play an important regulatory role in the synthesis of CoA from PA in brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.