Abstract
As the unique power entrance, the pantograph–catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train. Along with the fast development of high-speed railways all over the world, some commercialized lines are built for covering the remote places under harsh environment, especially in China; these environmental elements including wind, sand, rain, thunder, ice and snow need to be considered during the design of the pantograph–catenary system. The pantograph–catenary system includes the pantograph, the contact wire and the interface—pantograph slide. As the key component, this pantograph slide plays a critical role in reliable power transmission under dynamic condition. The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity, impact resistance, wear resistance, etc., directly determine the sliding electrical contact performance of the pantograph–catenary system; meanwhile, different detection methods of the pantograph–catenary system are crucial for the reliability of service and maintenance. In addition, the challenges brought from extreme operational conditions are discussed, taking the Sichuan–Tibet Railway currently under construction as a special example with the high-altitude climate. The outlook for developing the ultra-high-speed train equipped with the novel pantograph–catenary system which can address the harsher operational environment is also involved. This paper has provided a comprehensive review of the high-speed railway pantograph–catenary systems, including its progress, challenges, outlooks in the history and future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.