Abstract

From Greek antiquity to the era of computer science, astronomical refraction has raised questions about the real angular position of celestial bodies as seen from Earth surface, the structure of its atmosphere, and the celestial navigation. After introducing the embryonic ideas and the first measurements, the article first presents the early founders of a mathematically structured study: Cassini, Newton, Taylor—the last two inventing appropriate mathematical tools. Then the 18th century geodesists (Bouguer, Lacaille, etc.) enrich the corpus of observations to be understood, followed by the “classics”—Simpson, Bradley, Kramp, Laplace. The progress in metrology allows precise studies of the air refractive index and new theoretical efforts with Biot’s omnipresence. This gain in accuracy requires new calculations involving more sophisticated atmospheric models, as Radau and Ivory, among others, will do. Ivory pointing out a divergence in the numerical series being used, Kummer and Hausdorff find a new mathematical way. Numerical work on computers is eventually making useless all this mathematical virtuosity, although present work keeps relying on Biot’s theoretical advances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.