Abstract
Salivary glands are frequently damaged in patients undergoing radiotherapy for head and neck cancer. Whether PANoptosis, which is characterized by pyroptosis, apoptosis, and necroptosis, occurs during radiation injury to the salivary glands and its role remain unclear. Radiation-induced injury models of mouse submandibular gland, as well as primary acinar cells and HSG cell lines were established to determine the presence of radiation-induced PANoptosis. Several programmed cell death inhibitors, PFTα, disulfiram, Nec-1 and zVAD, were used to compare the effects of different cell death pathway on radiation injury. The LEGENDplex™ Human Inflammation Panel was used to characterize the inflammatory landscape secreted by salivary gland cells after radiotherapy. Single 15Gy or 8Gy radiotherapy triggered PANoptosis in mouse submandibular gland or salivary gland cells. Compared to the suppression of pyroptosis, apoptosis, or necroptosis alone, the inhibition of PANoptosis is more effective in preventing radiation injury to the salivary glands (p < 0.0001). The levels of multiple inflammatory cytokines were significantly up-regulated in the supernatants of HSG cells within 48 h after IR. Neutralizing inflammatory cytokines are capable of inhibiting salivary glands PANoptosis. Inhibition of PANoptosis induced by inflammatory cytokines can effectively prevent radiation injury of salivary glands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.