Abstract
Classic caching algorithms leverage recency, access count, and/or other properties of cached blocks at per-block granularity. However, for media such as flash which have performance and wear penalties for small overwrites, implementing cache policies at a larger granularity is beneficial. Recent research has focused on buffering small blocks and writing in large granularities, called containers, but it has not explored the ramifications and best strategies for caching compound blocks consisting of logically distinct, but physically co-located, blocks. Containers may have highly diverse blocks, with mixtures of frequently accessed, infrequently accessed, and invalidated blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.