Abstract

The detailed pathological mechanism of orofacial neuropathic pain remains unknown. We aimed to examine the pannexin 1 (Panx1) signaling in the trigeminal ganglion (TG) involvement in infraorbital nerve injury (IONI)-induced orofacial neuropathic pain. Mechanical head-withdrawal threshold (MHWT) was measured in IONI-treated rats receiving intra-TG Panx1 inhibitor or metabotropic glutamate receptor 5 (mGluR5) antagonist administration and MHWTs in naive rats receiving intra-TG mGluR5 agonist administration post-IONI. Glutamate and Panx1 in the TG were measured post-IONI. Panx1, mGluR5, and glutamine synthetase expression in TG were immunohistochemically identified, and changes in the number of mGluR5-P2X3 -expressed TG neurons were examined. MHWT was significantly decreased post-IONI, and this decrease was reversed by Panx1 inhibition or mGluR5 antagonism. mGluR5 agonism induced a decrease in the MHWT. IONI increased extracellular glutamate in TG. Panx1 was expressed in satellite glial cells and TG neurons, and intra-TG mGluR5 antagonism decreased the number of mGluR5 and P2X3 positive TG neurons post-IONI. IONI facilitates glutamate release via Panx1 that activates mGluR5 which was expressed in the nociceptive TG neurons innervating the orofacial region. In turn, P2X3 receptor-expressed TG neurons are enhanced via mGluR5signaling, resulting in orofacial neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call