Abstract

The poor electronic conductivity and low lithium ion diffusion rate of a LiFePO4 cathode material are the two major obstacles for its commercial applications in the power lithium ion batteries. This article utilized an electroactive and ion conductive copolymer, polyaniline–poly(ethylene glycol) (PANI–PEG), to modify carbon-LiFePO4 (cLFP) by a facile in situ chemical copolymerization method. The structure and morphology of the cLFP/PANI–PEG composite were confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared with a cLFP/PANI composite, the cLFP/PANI–PEG composite exhibited a more uniform and full polymer coating layer. Furthermore, this cLFP/PANI–PEG cathode material exhibits excellent cyclic stability (95.7% capacity retention after 100 cycles at 0.1 C) and high rate capability (125.3 mA h g−1 at 5 C) as the PANI–PEG copolymer coating layer facilitated electron and ion transport within the electrode. Electrochemical impedance spectroscopy (EIS) proved that the lithium ion diffusion in the cLFP/PANI–PEG composite was increased significantly by one order of magnitude compared with cLFP, indicating its possibility to be served as a cathode material for high-performance lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.