Abstract
BackgroundPanicle architecture is one of the main important agronomical traits that determine branch number and grain number in rice. Although a large number of genes involved in panicle development have been identified in recent years, the complex processes of inflorescence patterning need to be further characterized in rice. Brassinosteroids (BRs) are a class of steroid phytohormones. A great understanding of how BRs contribute to plant height and leaf erectness have been reported, however, the molecular and genetic mechanisms of panicle architecture influenced by BRs remain unclear.ResultsHere, we identified PMM1, encoding a cytochrome P450 protein involved in BRs biosynthesis, and characterized its role in panicle architecture in rice. Three alleles of pmm1 were identified from our T-DNA insertional mutant library. Map-based cloning revealed that a large fragment deletion from the 2nd to 9th exons of PMM1 was responsible for the clustered primary branch morphology in pmm1–1. PMM1 is a new allele of DWARF11 (D11) PMM1 transcripts are preferentially expressed in young panicles, particularly expressed in the primordia of branches and spikelets during inflorescence development. Furthermore, overexpression of OsDWARF4 (D4), another gene encoding cytochrome P450, completely rescued the abnormal panicle phenotype of pmm1–1. Overall, it can be concluded that PMM1 is an important gene involved in BRs biosynthesis and affecting the differentiation of spikelet primordia and patterns of panicle branches in rice.ConclusionsPMM1 is a new allele of D11, which encodes a cytochrome P450 protein involved in BRs biosynthesis pathway. Overexpression of D4 could successfully rescue the abnormal panicle architecture of pmm1 plants, indicating that PMM1/D11 and D4 function redundantly in BRs biosynthesis. Thus, our results demonstrated that PMM1 determines the inflorescence architecture by controlling brassinosteroid biosynthesis in rice.
Highlights
Panicle architecture is one of the main important agronomical traits that determine branch number and grain number in rice
Panicle Morphology Mutant 1 (PMM1) is a new allele of D11, which encodes a cytochrome P450 protein involved in BRs biosynthesis pathway
Our results demonstrated that PMM1 determines the inflorescence architecture by controlling brassinosteroid biosynthesis in rice
Summary
Panicle architecture is one of the main important agronomical traits that determine branch number and grain number in rice. TILLERS ABSENT1 (TAB1) has been shown to be involved in the activity of axillary meristems in rice [20, 21] Some other genes, such as GRAIN NUMBER1 (Gn1a), DENSE AND ERECT PANICLE1 (DEP1), DEP2 and DEP3, showed effects on the number of branches or spikelets in rice [22,23,24,25,26,27]. CLUSTERED PRIMARY BRANCH1 (CPB1) was identified to influence the development of panicle architecture, leaf angle and seed size [39]. Despite of these advances, the molecular and genetic mechanisms underlying the differentiation of spikelets or branch meristems are still poorly understood
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.