Abstract

Understanding adjustment processes has become central in economics. Empirical analysis is fraught with the problem that the target is usually unobserved. This paper develops, simulates and applies GMM methods for estimating dynamic adjustment models in a panel data context with partially unobserved targets and endogenous, time-varying persistence. In this setup, the standard first difference GMM procedure fails. I propose three estimation strategies. One is based on quasi-differencing, and it leads to two different, but related sets of moment conditions. The second is characterised by a statedependent filter, while the third is an adaptation of the GMM level estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.